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SUMMARY

This paper presents manufactured solutions (MSs) for some well-known eddy-viscosity turbulence models,
viz. the Spalart & Allmaras one-equation model and the TNT and BSL versions of the two-equation k–�
model. The manufactured flow solutions apply to two-dimensional, steady, wall-bounded, incompressible,
turbulent flows. The two velocity components and the pressure are identical for all MSs, but various alter-
natives are considered for specifying the eddy-viscosity and other turbulence quantities in the turbulence
models.

The results obtained for the proposed MSs with a second-order accurate numerical method show that
the MSs for turbulence quantities must be constructed carefully to avoid instabilities in the numerical
solutions. This behaviour is model dependent: the performance of the Spalart & Allmaras and k–� models
is significantly affected by the type of MS. In one of the MSs tested, even the two versions of the k–�
model exhibit significant differences in the convergence properties. Copyright q 2006 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The first step in checking the reliability of a computational fluid dynamics tool is code verification.
In this context, the method of manufactured solution (MMS), [1–7], is a very useful technique,
because it provides a general procedure for working with analytical solutions.
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Recently, a manufactured solution (MS) has been proposed for code and calculation verification
of two-dimensional, steady, wall-bounded, incompressible, turbulent flows [8]. This MS is defined
in a square domain where the bottom boundary is an impermeable, no-slip wall. The MS specifies
the two velocity components, the pressure, the eddy-viscosity and any additional turbulence quantity
required by the transport equations pertinent to six different turbulence models:

• Spalart & Allmaras one-equation model, [9].
• Menter’s one-equation model, [10].
• Standard k–� two-equation model, [11].
• Chien’s low-Reynolds k–� two-equation model, [12].
• The turbulent/non-turbulent (TNT) k–� two-equation model, [13].
• Menter’s baseline (BSL) k–� two-equation model, [14].
Initially, the part of the MS related to the turbulence model included manufactured functions

for the eddy-viscosity and the turbulence kinetic energy only; other turbulence quantities required
were derived from them. It has turned out, however, (see [8]), that in the context of a MS the
specification of the eddy-viscosity in the one-equation models is troublesome due to the behaviour
of the damping functions used in the models. Therefore, for the Spalart & Allmaras and Menter
one-equation models the MS specifies the dependent variable of the model (i.e. the damped eddy-
viscosity) instead of the eddy-viscosity itself.

Although the purpose of the MS is not to evaluate or compare turbulence models, one might
feel tempted to compare the numerical performance obtained with different turbulence models.
However, such comparisons are often unfair. For example, in the MS proposed in [8], the MSs
fields for k, � and � are simpler than the manufactured eddy-viscosity, �t . Thus, one-equation
models are ‘penalized’ in such comparisons. However, if a given model leads to an unexpected
poor performance of the flow solver for a given MS, it is important to find the reasons for such
behaviour.

Results obtained with the finite-difference version of PARNASSOS, [15], for the calculation of
the proposed MS have been presented in an earlier technical report, [16], Three types of exercises
were performed:

1. Numerically solve the turbulence model transport equation(s) using the known manufactured
velocity field.

2. Calculate the velocity and pressure field using the known manufactured eddy-viscosity.
3. Compute the complete flow field coupling flow and turbulence variables.

The first and third exercises were performed for the six turbulence models considered in [8].
The results presented in [16] show that it is relatively straightforward to attain the asymptotic

range in the solution of the continuity and momentum equations with the manufactured eddy-
viscosity field (exercise 2 of the list above). In exercise 3, however, the solution of the turbulence
quantities transport equations appears to have a significant effect on the observed order of accuracy
of the main flow quantities for the same grid density. We found that with the four two-equation
models tested, the observed orders of accuracy are not as well behaved as those obtained with
the manufactured �t , but they are still close to the theoretical order of the method. However, the
results obtained with the one-equation turbulence models exhibit an irregular behaviour of the
observed order of accuracy, p, which in the case of the Spalart & Allmaras model is clearly
below the theoretical order of the method. With this turbulence model, results from exercise 1
(the calculation of the eddy-viscosity with the manufactured velocity field) revealed that the

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:119–154
DOI: 10.1002/fld



EDDY-VISCOSITY MODELS 121

near-wall solution of the dependent variable, �̃, converges very slowly. Therefore, it is important
to investigate the reasons for such behaviour and get some insight into the cause of the difficulties.

In this paper we present and compare alternative formulations for the manufactured turbulence
quantities included in three of the six turbulence models considered in [8]: the one-equation model
of Spalart & Allmaras and the TNT and BSL versions of the k–� model.

For the one-equation model of Spalart & Allmaras, we define three MSs which differ in the
behaviour of the turbulence quantity, �̃, in the near-wall region. In the original MS, [8], �̃ in the
near-wall region varies with the fourth power of the distance to the bottom. The two alternative
MSs presented in this paper depend on the second and first powers of the distance to the bottom.

The specified distributions of �̃ proposed for the Spalart & Allmaras model are equal to the distri-
butions of eddy-viscosity, �t , specified for the two versions of the k–� model. In the two-equation
models, the second manufactured quantity is the turbulence kinetic energy, k. In two of the MSs
tested, the manufactured k is similar to �t , but with a lower order dependency on the distance to
the bottom than �t (i.e. k ∼ y2 when �t ∼ y4 and k ∼ y when �t ∼ y2). We have also tested three
alternative MSs where k is obtained from Bradshaw’s hypothesis of equilibrium turbulence. These
five alternative MSs lead to different boundary conditions and different ‘near-wall’ behaviour for
k and �.

In both cases, one and two-equation models, only the original MS, [8], represents the expected
physical behaviour of a near-wall turbulent flow. However, the behaviour of the turbulence quantities
reproduced in the MSs may not be as local as one would expect in a real turbulent flow.

The paper is organized as follows: Section 2 presents the proposed MSs, which for the sake of
completeness include also the main flow variables; the results of the numerical calculations of the
MSs with a second-order method are presented and discussed in Section 3. The conclusions of this
paper are summarized in Section 4. The source terms required to satisfy the turbulence quantities
transport equations are presented in the Appendix. The minimum and maximum values of all the
terms of the momentum equations and turbulence quantities transport equations, including the
manufactured source terms, are also included in the Appendix.

2. MANUFACTURED SOLUTIONS

2.1. Computational domain

The computational domain is a square of side 0.5L with 0.5L�X�L and 0�Y�0.5L and the
Reynolds number, Re, is 106

Re= U1L

�
(1)

where U1 is the reference velocity, L the reference length and � the kinematic viscosity. In non-
dimensional variables, (x, y), the computational domain is given by 0.5�x�1 and 0�y�0.5,
where x stands for the horizontal direction and y for the vertical direction.

2.2. Main flow variables

In the definition of the velocity components and pressure coefficient we will use the following
non-dimensional ‘similarity variable’:

� = �y

x
(2)

where is �= 4.
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122 L. EÇA ET AL.

2.2.1. Horizontal velocity component, ux . The horizontal velocity component, ux , is given by

ux = erf(�) (3)

Equation (3) is not a physically realistic velocity profile for a near-wall turbulent flow. Nevertheless,
the main goal of including a no-slip condition along the bottom solid wall is satisfied.

2.2.2. Vertical velocity component, uy. The vertical velocity component, uy , is computed from
the continuity equation in incompressible flow. Thus, the velocity is a divergence free field

uy = 1

�
√

�
(1 − e−�2) (4)

2.2.3. Pressure, P. The pressure is taken to be

Cp = P

�(U1)2
= 0.5 ln(2x − x2 + 0.25) ln(4y3 − 3y2 + 1.25) (5)

2.3. Turbulence quantities for the Spalart & Allmaras one-equation model

The Spalart & Allmaras model uses a dependent variable �̃ related to the eddy-viscosity, �t , by a
damping function fv1. As discussed in [8], it is preferable that a MS in the one-equation models
specifies the dependent variable �̃ instead of the eddy-viscosity, �t . The manufactured �t will be
deduced from the relationship between �t and �̃ as follows.

2.3.1. Eddy-viscosity, �t . In the Spalart & Allmaras model, [9], �t is given by

�t = �̃ fv1 (6)

with

fv1 = �3

�3 + c3v1
(7)

and

� = �̃

�

cv1 = 7.1

(8)

2.3.2. Specification of the turbulence model-dependent variable, �̃. In the MS proposed in [8], �̃
is given by

�̃ = 0.25�̃max�
4
�e

2−�2� (9)

where

�� = ��y

x
(10)

�� = 2.5� and �̃max is 103�.
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Figure 1. Manufactured profiles of �̃ at x = 0.875.

In a near-wall turbulent flow, �t varies with y4. This behaviour is not completely reproduced
by Equation (10) due to the effect of the damping function, fv1. Furthermore, in the MS this
behaviour will not be as local as in a real near-wall turbulent flow. We will refer to this MS as
MS4.

To avoid the numerical difficulties imposed by the y4 dependence of �̃ in MS4, an alternative
manufactured �̃ is proposed. In this MS, �̃ is given by

�̃= �̃max�
2
�e

1−�2� (11)

Equation (11) is similar to that of the original MS, Equation (9), but in this case �̃ depends only
on the second power of the wall distance, y2. Accordingly, we will designate this case by MS2.

A third possibility, denoted by MS1, was also considered for the specification of �̃. The proposed
function varies linearly with y in the near-wall region and presents the same exponential decay as
in the other two MSs

�̃ = �̃max
√
2��e

0.5−�2� (12)

Figure 1 shows the three manufactured profiles of �̃ at x = 0.875, including a detailed view of
the near-wall �̃ profiles. The maximum of �̃ is identical in the three cases, but it occurs at three
different locations: �� =√

2 for the MS4, �� = 1 for the MS2 and �� = √
2/2 for the MS1.

The three MSs satisfy the wall boundary condition of a near-wall turbulent flow: �̃ = 0. However,
the proposed formulas lead to significant differences in some of the terms of the transport equation
for �̃. In the Spalart & Allmaras model, dissipation is proportional to the ratio between �̃ and y
(the distance to the wall), which behaves very differently in the three MSs. In the near-wall region,
this ratio is proportional to y2 for MS4 and to y in MS2. Therefore, dissipation tends to zero at
the bottom of the domain in both cases. In the MS1 case, this ratio tends to a constant at the wall.
Hence, the turbulent flow solver may exhibit different convergence behaviour for the three MS.
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2.4. Turbulence quantities for the TNT and BSL k–� two-equation models

For the TNT and BSL versions of the k–� turbulence model, we have tested five alternative MSs
based on different specifications of the eddy-viscosity, �t , and the turbulence kinetic energy, k. The
specification of the eddy-viscosity is identical to that presented above for �̃. However, we have
adopted two different strategies for k: use a definition equation of the same type of the one used for
�̃; or apply Bradshaw’s hypothesis for turbulence in equilibrium that states that k is proportional
to the product of �t by the strain rate, S

k = �t
0.3

S (13)

where

S =
(

�ux
�y

+ �uy

�x

)
(14)

� is obtained from the eddy-viscosity definition:

�= k

�t
(15)

Therefore, when Equation (13) is adopted for the definition of k, � is given by

�= S

0.3
(16)

The main disadvantage of such approach is that it is not representative of the theoretical behaviour
of � near a solid wall. However, this may prove to be a numerical advantage because close to a
wall � varies with y−2 and so is singular at the wall whereas equation (16) is not.

Like the MSs for the Spalart & Allmaras model, the MSs proposed for the k–� model will be
designated according to the equations selected for the eddy-viscosity and turbulence kinetic energy
definition, as detailed below.

2.4.1. MS4 and MS4B. These two MSs use the same definition of �t given by Equation (9) with �̃
replaced by �t , while �̃max ≡ (�t )max. The number 4 in their designation refers to the y4 behaviour.
For the MS4, which corresponds to the original MS proposed in [8], k is defined by

k = kmax�
2
�e

1−�2� (17)

Close to the bottom of the domain (y = 0), i.e. in the near-wall region, k varies with y2 and the
maximum of k occurs closer to the wall than the maximum of �t . The proposed value of kmax
is 0.01.

With these definitions of �t and k, � is given by

� = 4
kmax

(�t )max
e−1�−2

� = 4
kmax

(�t )max
e−1 x2

�2� y
2

(18)

This distribution of � is physically realistic in that it behaves as y−2 near the wall. Thus, the Ms
for � raises the same problem found in real near-wall turbulent flows: � goes to infinity at the
wall.
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Figure 2. Manufactured profiles of k and � at x = 0.875.

The alternative MS4B is constructed with the same �t , but with k given by Equation (13).
Therefore, � is defined by the strain rate and tends to a finite value at the wall. It is interesting to
investigate the numerical consequences of this change in the � boundary condition at the bottom
of the domain.

2.4.2. MS2 and MS2B. The MS2 and MS2B are similar to the previous MSs. In both cases, �t
is defined by Equation (11) with �̃ replaced by �t . The number 2 in their designation obviously
refers to the y2 behaviour. In the MS2B case, k is given by Bradshaw’s equilibrium hypothesis,
Equation (13). Therefore, � is defined by Equation (16).

For the MS2, k is defined to have a linear dependency on y for the near-wall region and an
exponential decay in the outer region:

k = kmax
√
2��e

0.5−�2� (19)

Consequently, � is given by

�=√
2

kmax

(�t )max
e−0.5�−1

� = √
2

kmax

(�t )max
e−0.5 x

��y
(20)

Just like for MS4, � goes to infinity at the wall in the MS2. However, � varies like y−1 instead
of y−2 in the near-wall region.

2.4.3. MS1B. The fifth option tested uses an eddy-viscosity defined by Equation (12) and the
turbulence kinetic energy specified from the Bradshaw equilibrium hypothesis, Equation (13).
Therefore, � is identical to that of the MS4B and MS2B cases, Equation (16).

The manufactured eddy-viscosity has the same expression of the manufactured �̃ for the Spalart
& Allmaras turbulence model (i.e. �t = �̃). Therefore, the �t profiles at x = 0.875 are equal to the
�̃ profiles plotted in Figure 1. Figure 2 presents the manufactured profiles of k and � at x = 0.875
for the five MSs proposed.

Although the k profiles of the five MSs exhibit similar behaviours, the near-wall variations and
the peak values are clearly different for all five MSs. The most significant differences are observed

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:119–154
DOI: 10.1002/fld



126 L. EÇA ET AL.

for the � profiles. Bradshaw’s equilibrium hypothesis leads to the same � profile for the MS4B,
MS2B and MS1B, which exhibits a nearly constant value in the near-bottom region. On the other
hand, the MS4 and MS2 exhibit a vertical asymptote at the wall which may be expected to have
some impact on the convergence properties of the numerical solver.

3. NUMERICAL CALCULATIONS OF THE MANUFACTURED SOLUTIONS

This section presents and discusses results obtained with the PARNASSOS turbulent flow solver
for the MSs presented in the previous sections. Effects of the MS structure and functional forms
of the numerical performance of PARNASSOS are highlighted.

3.1. Flow solver

All calculations were performed with the 2-D finite-difference version of PARNASSOS, [15];
this code solves the steady, incompressible, Reynolds-averaged Navier–Stokes equations using
eddy-viscosity turbulence models. The main characteristics of PARNASSOS are:

• The continuity and momentum equations are written in Contravariant form and the momentum
balance is computed along the directions of the curvilinear coordinate system.

• A fully collocated arrangement is adopted with the unknowns and the discretization centred
at the grid nodes.

• Newton linearization is applied to the convective terms.
• Second-order schemes are applied in the discretization of diffusion and all the coordinate
derivatives included in the metric coefficients.

• Velocity derivatives in the continuity equation and the pressure gradient are discretized with
third-order schemes using a fixed bias.

• Third-order upwind discretization is applied to the convective terms of the momentum equa-
tions.

• The linear system of equations formed by the discretized continuity and momentum equations
is solved simultaneously with GMRES, [17], using a coupled ILU preconditioning.

• Under relaxation is applied with a quasi time-derivative term.
• The convective terms of the transport equations of the turbulence quantities are discretized
with third-order upwind schemes.

• The linearization procedure of the production and dissipation terms of the turbulence quantities
transport equations follows the standard approach, i.e. production is added to the right-hand
side and dissipation to the main diagonal.

• The solution of the turbulence quantities transport equations is uncoupled from the solution
of the continuity and momentum equations.

The manufactured source term of the momentum equations is computed at each grid node and
added to the right-hand side. For the turbulence quantities transport equations the handling of the
manufactured source term depends on its sign: a positive term is added to the main diagonal of the
system (divided by the dependent variable), whereas a negative term is included in the right-hand
side.
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3.2. Grid sets

Although we have tested three different grid sets in our studies [18], in this paper we will focus
on the results obtained in a set of Cartesian grids with equidistant grid nodes in the x direction
and clustered grid nodes close to the bottom boundary using a one-sided stretching function, [19]
(stretching parameter 0.05).

The grid set includes 16 geometrically similar grids covering a grid refinement ratio of 4. The
finest grid has 401× 401 grid nodes and the coarsest grid 101× 101. There are 19× 19 physical
locations which are common to all grids. This allows to monitor grid convergence of local/point
quantities without requiring any sort of interpolation.

3.3. Monitoring the error

Following [3], the error of any flow quantity, 	, can be expressed by a power series expansion.
Retaining only the lowest order term we have

e(	) =	 − 	ms � 
h p
i (21)

where the subscript ms identifies the MS, 
 is a constant, hi is the typical cell size and p is the
convergence rate.

For the present grids,

hi = 1

N X
= 1

NY

N X and NY stand for the number of nodes in the x and y directions.
We shall quantify the error in the numerical solution by monitoring both local and global (e.g.

friction force on bottom wall) quantities. For a given flow quantity, 	, we have computed the root
mean square (RMS) of the error of the numerical solution, which is given by

RMS(e(	))=
√√√√NX−1∑

i=2

NY−1∑
j=2

(	( j, i) − 	( j, i)ms)2

(N X − 2)(NY − 2)
(22)

i is the index of the node in the x direction and j is the index of the node in the y direction.
There is no guarantee that the convergence of the flow field is uniform throughout the compu-

tational domain (i.e. that p is constant over the whole domain). Hence, we have also analysed the
error at 8 fixed locations of the grid set. Their i and j indices are given in Table I, together with
their x and y coordinates.

In the results presented in the remainder of this section, the observed order of accuracy, p, and
the constant 
 are determined with a least-squares approach, [20]. The fits plotted in the figures are
obtained with the data of the 11 finest grids of each set, i.e. the grids with at least 201× 201 grid
nodes, covering a grid refinement ratio of 2. However, we have also checked the dependence of
the observed order of accuracy on the selected grids. The observed order of accuracy is estimated
for different groupings of grids, which must present a grid refinement ratio between the finest and
coarsest grid, ri1 = hi/h1, of at least 1.3. This is an important check, because it indicates whether
the data obtained in the finest grids are in the so-called ‘asymptotic range’.

In all calculations presented below, the iterative error was reduced to machine accuracy and the
calculations were performed with 15-digits precision. Therefore, the computed errors are mainly
a consequence of the discretization error.
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Table I. Coordinates of the 8 selected locations to monitor the convergence of the
numerical solution with the grid refinement ratio.

i j x y × 10+3

P1 1 + 2(N X − 1)/20 1 + (NY − 1)/20 0.55 1.43
P2 1 + 4(N X − 1)/20 1 + 2(NY − 1)/20 0.60 3.30
P3 1 + 6(N X − 1)/20 1 + 3(NY − 1)/20 0.65 5.73
P4 1 + 8(N X − 1)/20 1 + 4(NY − 1)/20 0.70 8.89
P5 1 + 10(N X − 1)/20 1 + 5(NY − 1)/20 0.75 13.0
P6 1 + 12(N X − 1)/20 1 + 6(NY − 1)/20 0.80 18.3
P7 1 + 14(N X − 1)/20 1 + 7(NY − 1)/20 0.85 25.2
P8 1 + 16(N X − 1)/20 1 + 8(NY − 1)/20 0.90 34.0

3.4. Calculation of the eddy-viscosity field with the manufactured velocity field

The first exercise performed with the proposed MSs was to solve the turbulence transport equations
using the manufactured velocity field. It is important to emphasize that the velocity field is identical
for all the MS tested. Therefore, any change in convergence properties can readily and formally
be attributed to the solution of the turbulence model transport equations.

Dirichlet boundary conditions were applied for the turbulence quantities at the four boundaries
of the computational domain. This is straightforward for most of the turbulence quantities. The
dependent variable of the one-equation model, �̃, the turbulence kinetic energy, k, and � for the
MS4B, MS2B and MS1B are all trivial to set using the MS. However, for the MS4 and MS2 �
goes to infinity at the bottom of the computational domain. This is a common problem with k −�
models in near-wall turbulent flows. To avoid any influence of the boundary value of �, we have
fixed � on the first two layers of grid nodes away from the bottom ( j = 2 and 3) using the MS.
This is fairly standard practice for the k–� model, [21].

In PARNASSOS, there are two layers of virtual grid points at each boundary of the computational
domain. They guarantee that the stencil of the third-order schemes can be maintained near and
at the boundaries of the computational domain. In the present calculations, we have filled in
these virtual layers using quadratic extrapolation based on the boundary node and its two closest
neighbours, i.e. the MS is only specified at the boundaries of the computational domain.

3.4.1. Spalart & Allmaras one-equation model. The convergence of the RMS error of �̃ as a
function of the grid refinement ratio is illustrated in Figure 3 for the MS4, MS2 and MS1. The
observed order of accuracy at the 8 selected locations of each MS is given in Tables II–IV, which
include also p for the RMS error. These results show that the convergence properties of �̃ are
different for the three MSs. We make the following observations:

• The MS2 is the only one exhibiting the expected behaviour, with a well-established order
of accuracy for the RMS error equal to the theoretical order of the method, and a vanishing
error for the extrapolation to zero mesh size (see Figure 3). Furthermore, the p of �̃ shows a
consistent behaviour at all selected locations, and has a value close to the theoretical order
of the method (see Table III).

• For MS4, the RMS error of �̃ converges with an unexpected first-order accuracy and the value
of p for the RMS error is nearly independent of the group of grids selected. Furthermore,
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Figure 3. Grid convergence of RMS error of �̃. Spalart & Allmaras model
with the velocity specified from MS.

Table II. Observed order of accuracy of �̃ at the 8 selected locations for the MS4.

Grids ri1 P1 P2 P3 P4 P5 P6 P7 P8 RMS

1–6 1.33 2.0 2.0 2.1 2.0 2.1 0.7 2.0 2.0 1.0
1–7 1.43 2.0 2.0 2.1 2.0 2.1 0.5 2.0 2.0 1.0
1–8 1.54 2.0 2.0 2.1 2.0 2.1 0.2 2.0 2.1 1.0
1–9 1.67 2.0 2.0 2.1 2.0 2.1 0.0 2.0 2.1 1.0
1–10 1.82 2.0 2.0 2.1 2.0 2.1 0.0 2.0 2.1 1.0
1–11 2.00 2.0 2.0 2.2 2.0 2.1 0.0 2.0 2.1 1.0
1–12 2.22 2.0 2.0 2.2 2.0 2.1 0.0 2.0 2.1 1.0
1–13 2.50 2.0 2.1 2.2 2.0 2.1 — 2.0 2.1 1.0
1–14 2.86 2.0 2.1 2.3 1.9 2.1 — 2.0 2.1 1.1
1–15 3.33 2.0 2.1 2.3 1.9 2.0 7.4 2.0 2.1 1.1
1–16 4.00 2.0 2.1 2.4 1.9 2.0 5.9 2.0 2.1 1.0

Spalart & Allmaras model using the velocity specified from the MS.

the level of the error is substantially larger than for MS2 and MS1 cases and the extrapolated
value to zero cell size is inconsistent. However, 7 of the 8 (the exception is P6) selected
locations exhibit a well-established order of accuracy, which is close to the theoretical order
of the method. Therefore, one concludes that the convergence properties of �̃ are dependent
on the selected location.

• The MS1 exhibits a RMS error similar to that of MS2 (Table IV). However, there is no
consistency in the observed order of accuracy of the RMS error, which shows a significant
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Table III. Observed order of accuracy of �̃ at the 8 selected locations for the MS2.

Grids ri1 P1 P2 P3 P4 P5 P6 P7 P8 RMS

1–6 1.33 1.8 2.0 2.0 2.1 2.1 2.1 2.1 2.2 2.0
1–7 1.43 1.9 2.0 2.0 2.1 2.1 2.1 2.1 2.2 2.0
1–8 1.54 2.1 2.0 2.0 2.1 2.1 2.1 2.1 2.2 2.0
1–9 1.67 1.9 2.0 2.0 2.1 2.1 2.1 2.1 2.2 2.0
1–10 1.82 1.8 2.0 2.0 2.1 2.1 2.2 2.2 2.2 2.0
1–11 2.00 2.0 2.0 2.0 2.1 2.1 2.2 2.2 2.2 2.0
1–12 2.22 1.8 2.0 2.0 2.1 2.2 2.2 2.2 2.2 2.0
1–13 2.50 1.7 2.0 2.0 2.1 2.2 2.2 2.2 2.2 2.0
1–14 2.86 1.9 2.0 2.1 2.1 2.2 2.2 2.2 2.2 2.0
1–15 3.33 1.7 2.0 2.1 2.1 2.2 2.2 2.2 2.3 2.0
1–16 4.00 1.6 2.1 2.1 2.1 2.2 2.2 2.2 2.3 2.0

Spalart & Allmaras model using the velocity specified from the MS.

Table IV. Observed order of accuracy of �̃ at the 8 selected locations for the MS1.

Grids ri1 P1 P2 P3 P4 P5 P6 P7 P8 RMS

1–6 1.33 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 —
1–7 1.43 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.0 —
1–8 1.54 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 —
1–9 1.67 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 —
1–10 1.82 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 2.5
1–11 2.00 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 3.5
1–12 2.22 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 3.4
1–13 2.50 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 3.0
1–14 2.86 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 2.7
1–15 3.33 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 2.5
1–16 4.00 2.0 2.0 2.0 2.0 2.0 2.0 2.1 1.9 2.3

Spalart & Allmaras model using the velocity specified from the MS.

influence of the groups of grids selected. Furthermore, as for MS4, the extrapolation to zero
cell size does not indicate a vanishing error. On the other hand, the observed p at the 8 selected
locations is rather consistent and close to the theoretical order of the method. Therefore, as
for MS4, the convergence properties of �̃ are dependent on the selected location.

These awkward results show that the construction of a MS for code verification of the Spalart &
Allmaras eddy-viscosity turbulence model is not trivial. However, they are perhaps not completely
surprising, because all the terms of the �̃ transport equation are non-linear with the exception of
convection which, in the present context of a fixed velocity field, is a linear term.

In MS4, the numerical difficulties are caused by the near-wall behaviour of �̃. Figure 4 presents
the �̃ profiles at x = 0.875 obtained for MS4 and MS2 on 4 grids. In this plot we have included
an extra level of grid refinement, 801× 801. The data plotted for the MS4 in Figure 4 show an
oscillation in the calculated �̃ profiles in the near-wall region that disappears very slowly with grid
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Figure 4. �̃ profiles at x = 0.875 for the MS4 and MS2. Spalart & Allmaras model using
the velocity specified from the MS.

refinement. This oscillation increases with the distance from the inflow boundary, i.e. a similar
comparison for x<0.875 exhibits smaller differences between MS4 and the profiles from the 4
grids. However, the MS2 case in which �̃ varies only with y2 shows graphically coincident lines
for the four grids on Figure 4b.

The origin of the problems for the MS1 must be different because �̃ has a simpler near-wall
behaviour than in MS2. In order to investigate the origin of the problem, we have computed
the convergence of the error of the four terms in the �̃ transport equation: convection, diffusion,
production and dissipation. Furthermore, we have performed an extra set of calculations for the
MS1 where production and dissipation are taken exactly from the MS. We will designate this set
of results by MS1ms.

The RMS error of the four terms of the �̃ transport equation are presented in Figure 5 as
a function of the grid refinement ratio. While we have used the manufactured production and
dissipation terms in the MS1ms solution, we still monitor the error of these terms in the converged
solutions.

The data plotted in Figure 5 show several interesting features:

• The two terms that involve derivatives of �̃ exhibit the largest errors for the MS4. This is a
consequence of the oscillation of the �̃ profiles seen in Figure 4.

• For MS1, the RMS error of dissipation, production and diffusion obtained in the six finest
grids are outside the plotted region. These are the three terms which involve �̃, whereas
convection includes only derivatives of �̃. These results explain the difficulties to obtain the
observed order of accuracy of the RMS of the error of �̃ for the MS1 solution.

• On the other hand, the RMS error of the four terms of the �̃ transport equation in the MS1ms
case show that the problems originated with the dissipation term, which presents a much
larger error level than the other three terms. As we have mentioned previously, unlike the
other two MSs, MS1 has a dissipation term that does not go to zero at the wall. This constant
dissipation term in the near-wall region must be more difficult to compute accurately when
the near-wall grid line distance is reduced.
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Figure 5. Grid convergence of RMS error of the terms in the �̃ transport equation. Spalart & Allmaras
model using the velocity specified from MS.

• Although the convergence of the four terms of the �̃ transport equation is perfectly smooth
for MS2, it is interesting to note that convection and diffusion do not converge with the same
second-order accuracy as �̃.

In practical turbulent flow calculations the quantity of interest is not �̃ but the eddy-viscosity,
�t . Although the two quantities are identical in a substantial part of the computational domain,
the damping function fv1 may influence the convergence properties of �t . One must not forget
that fv1 is a non-linear function of �̃. Figure 6 presents the convergence with the grid refinement
of the RMS error of �t to the left and of �̃ and �t at the location P5 for the MS4 to the right.
Unfortunately, fv1 is 1 or close to 1 for the MS2 and MS1 at the selected locations and so �t
coincides with �̃ at these locations.
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Figure 6. Grid convergence of the RMS error of �t and errors of �̃ and �t at the location P5. Spalart &

Allmaras model using the velocity specified from MS.

The RMS error of �t exhibits convergence properties which are not the same as those of �̃ for
MS4 and MS1. In MS4 case, the observed order of accuracy for �t is larger than that of �̃. This
is a consequence of the behaviour of the solution in the region where fv1 is smaller than 1. As
illustrated in Figure 6, the convergence of �t at the location P5 is affected by the value of fv1,
which causes an artificially high value of p in the case of �t . On the other hand, the problematic
region of the MS1 is close to the location where the damping function tends to zero and so the
convergence of the RMS error of �t does not exhibit any of the problems discussed previously for
�̃ on Figures 4 and 5.

These results show that the damping functions in the turbulence model may affect the con-
vergence properties of the various turbulence quantities. Furthermore, they illustrate once more
the difficulties to manufacture solutions for code verification of the Spalart & Allmaras model,
because the effects of the damping function are different in the three solutions tested.

3.4.2. TNT and BSL k–� two-equation models. The two dependent variables of these turbulence
models are k and �. The main difference between the two versions of the k–� model tested is the
coefficient that multiplies the cross-diffusion term. The TNT version includes an on/off switch,
whereas the BSL version includes a blending function, F1, which is dependent on y, k and �.

Surprisingly, we had numerical difficulties to converge the BSL model for MS2B, which we
did not encounter with the TNT version. With the BSL model in the MS2B, it was impossible to
reduce the iterative error to machine accuracy. Even so, the convergence stagnates at a level where
it is possible to neglect the iterative error, [22]. The problems originate from the determination
of the blending function, F1, and the cross-diffusion term. Therefore, to clarify issues, we have
performed calculations with F1 and the cross-diffusion term taken from the MS for the BSL k–�
model, which we will designate by MS2Bms. With such an approach it was easy to reduce the
iterative error to machine zero.
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Figure 7. Grid convergence of the RMS error of k. TNT and BSL k–� models
using the velocity specified from MS.

Figure 7 presents the RMS error of k for the TNT and BSL versions of the k–� model and the
five MSs as a function of the grid refinement ratio. We observe the following:

• The convergence of the RMS error of k for the five MSs yields an observed order of accuracy
(1.8–2) very close to the theoretical order (2) of the method for the two versions of the k–�
model.

• For a fixed grid refinement level, the errors of MS2B and MS4B are larger than those of MS2
and MS4, which have exactly the same eddy-viscosity field.

• The largest errors are obtained for the MSs where the eddy-viscosity varies as y2 in the
near-wall region; the smallest errors occur for the case of a linear dependence of �t on y. This
is a somehow unexpected result, because one would think that the highest order specification
of k, MS4B, leads to the largest errors.

• The convergence of k for the MS2B and MS2Bms calculations with the BSL model are almost
identical, because the k equation is dealt with in the same manner in both cases.

Figure 8 presents the convergence of the RMS error of � with the grid refinement ratio for the
five MSs with the two versions of the k–� model tested. We recall that the manufactured � is
the same for MS4B, MS2B and MS1B. Furthermore, � has a finite value at the wall for these
three MSs while it tends to infinity for the MS4 and MS2. The convergence properties of � are
clearly more affected by the MS selected than the convergence properties observed for k. Due to
the different orders of the RMS error of � for the five MS, Figure 8 includes separate graphs for
the MS4B, MS2B and MS1B.

• A careless observation of the plots of Figure 8 may lead to the conclusion that the solution is
diverging for MS4 and MS2. This would be an inconsistent conclusion because the k solution
converges for all MSs. Further inspection indicates that this behaviour of the RMS error of
� is a consequence of the � boundary condition applied at the wall. The RMS error grows
with the grid refinement for the MS4 and MS2 due to the reduction of the distance of the grid
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Figure 8. Grid convergence of the RMS error of �. TNT and BSL k–� models
using the velocity specified from MS.

nodes to the wall. Logically, the effect is stronger for MS4 (at the first grid node away from
the wall � ∼ y−2) than for the MS2 (at the first grid node away from the wall �∼ y−1).

• As expected, the convergence of � for the MS4B, MS2B and MS1B is very similar for the
TNT version of the model, exhibiting an observed order of accuracy equal to the theoretical
order of the method for the three cases.

• On the other hand, the BSL version of the model leads to significant differences in the
convergence properties of � for the MS4B, MS2B and MS1B.
— The MS2B leads to an RMS error two orders of magnitude larger than those of MS4B and

MS1B. The calculations performed with the blending function, F1, and the cross-diffusion
term taken from the MS, MS2Bms, exhibit the same observed theoretical convergence as
found with MS4B and MS1B (p= 2).

— The differences between the error levels of the MS4B and MS1B are significantly larger
for the BSL version than for the TNT k–� model.
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Figure 9. Grid convergence of the error of � at the 8 selected locations. TNT and BSL k–� models
using the velocity specified from MS.

To illustrate that the large values of the RMS error obtained for the MS4 and MS2 are a
consequence of a local phenomena, namely the singular boundary condition, Figure 9 presents the
convergence of the error of � at the 8 selected locations for the two versions of the k–� model
tested. Note that 5 points exhibit small errors (P3,P4, P6,P7,P8) and three others show larger
errors (P1,P2, P5). For clarity the two groups of points are plotted on separate graphs. The data
plotted in Figure 9 show that:

• Although the results of the two versions of the k–� model are not exactly equal, the trends
observed in the two models are the same.

• Most of the locations exhibit an observed order of accuracy equal to 2. All extrapolations
performed with the least-squares approach applied to the 11 finest grids indicate a vanishing
error for zero cell size.
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Figure 10. Error of � in the near-wall region at x = 0.875. Manufactured velocity field.

• There are two locations, P1 and P5, that exhibit error levels two orders of magnitude larger
than those obtained at the five other locations. At point P2, the error level is smaller than in
P1 and P5, but clearly larger than for the remaining locations.

The problems originating at the wall boundary condition of � in the MS4 and MS2 are illustrated
in Figure 10. The error of the � profiles at x = 0.875 is plotted in the near-wall region. We have
computed the error of �y2/x2 for MS4 and the error of �y/x for MS2, which are both constant
values for the complete computational domain (see Equations (18) and (20)). The behaviour of
the error for the MS4, where � varies with y−2, is exactly the same as we have observed for the
k–� model in simple flat plate boundary-layer flows, [23]: the error level at the first grid node
off the wall where � is computed from its transport equation is almost independent of the grid
refinement level; the error decays rapidly with the increase of the distance to the ‘wall’.

On the other hand, for MS2, for which � behaves as y−1, � shows a substantially smaller error
than MS4. In this case, the error level at the first grid node where the � transport equation is
solved increases with the grid refinement.

In order to understand the differing behaviours of the two versions of the k–� model tested,
Figure 11 presents the cross-diffusion term of the � transport equation at x = 0.875 for the five
MSs. It is clear that the cross-diffusion term generated by the manufactured k and � behaves in a
much better manner in the TNT formulation than in the BSL version.

In the BSL version, there are MSs where the cross-diffusion profiles present kinks, due to the
definition of the blending function, F1, as illustrated in Figure 12. In MS4 the cross-diffusion
term tends to a constant value at the wall, y = 0, whereas for the MS2 it goes to infinity. This
being said, none of these MSs caused numerical convergence problems with the BSL version.
The ‘problematic’ MS is MS2B, which exhibits a small oscillation (which is hardly visible in
Figure 11) close to y = 0.05 before it grows to positive values. As an example of the difficulties to
manufacture solutions for code verification of eddy-viscosity turbulence models, Figure 12 presents
the profiles of the blending function of the BSL model, F1, at x = 0.875 for the five MSs. There
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138 L. EÇA ET AL.

4

3

2

1

0

0 0.05 0.1 0.15 0.2

-1

-2

-3

-4

MS4B
MS2
MS2B
MS1B

y

4

3

2

1

0

0 0.05 0.1 0.15 0.2

-1

-2

-3

-4

y

MS4

TNT BSL

MS4B
MS2
MS2B
MS1B

MS4

Figure 11. Profiles of the cross-diffusion term of the � transport equation of the
TNT and BSL k–� models at x = 0.875.

1

0.8

0.6

0.4

0.2

0

MS4B
MS2
MS2B
MS1B

0 0.05 0.1 0.15 0.2
y

0 0.005 0.01 0.015 0.02
y

MS4

MS4B
MS2
MS2B
MS1B

MS4

F
1

1

0.8

0.6

0.4

0.2

0

F
1

Figure 12. Profiles of the blending function, F1, of the BSL k–� model at x = 0.875.

are MSs where F1 does not reach 1 and others where the profiles have kinks. Nevertheless, none
of these MSs led to numerical convergence problems. Amazingly, the ‘problematic’ MS is one
of the few that shows the expected behaviour of F1, with a constant value of 1 in the near-wall
region and a rapid decay to zero in the outer region.

As for the Spalart & Allmaras model, the dependent variables of the k–� turbulence model are
not the quantity used in the Reynolds-averaged momentum equations. Therefore, it is important
to check the convergence properties of the eddy-viscosity, �t , which in these two versions of the
k–� model is obtained from the ratio of k and �.
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using the velocity specified from MS.

Figure 13 presents the convergence of the RMS error of �t as a function of the grid refinement
ratio for the TNT and BSL k–� models for the five MSs. The observed order of accuracy is close
to the theoretical order of the method for all the cases. There are a few details that should be
highlighted:

• The largest error levels are obtained for the MS2, which is not equivalent to the trends
observed for k and �. On the other hand, the lowest level of the error is consistently observed
for the MS1B.

• In the BSL method, the convergence of the MS2B and MS2Bms does not reflect the significant
difference between the two fields of �.

• The error levels of the MS4 and MS2 are larger than for the MS4B and MS2B, which is in
agreement with the � solution but with the opposite trend observed for the k convergence
properties, where the RMS error of MS4 and MS2 are smaller than those of MS4B and
MS2B.

3.5. Calculation of the complete flow field

The calculation of the complete flow field was performed with boundary conditions typical of
a boundary-layer flow. The following Dirichlet boundary conditions were applied using the MS
values: ux and uy at the bottom wall; ux and uy at the inlet boundary; ux and Cp at the top
boundary. At the outlet boundary, the derivatives of ux , uy and Cp with respect to x were set equal
to the values defined by the MSs.

At the top boundary, there is no boundary condition for uy because the continuity equation
includes only first derivatives. Therefore, uy is obtained frommass conservation at the top boundary.
At the inlet and wall boundaries, Cp does not require any boundary conditions (the momentum
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equations include only first-order derivatives of p). At these boundaries, Cp can be extrapolated
from the interior of the domain or calculated from the local solution of the momentum equations.
However, in the present calculations we have just made the first derivative of the pressure equal
to the value of the MSs.

For turbulence quantities, the boundary conditions at the inlet, bottom and top boundaries are the
same as in the previous exercise. At the outlet boundary, the derivative of any turbulence quantity
with respect to x was set equal to the exact value of the corresponding MS.

The two layers of virtual grid nodes were filled in using quadratic extrapolation based on the
boundary node and its two closest neighbours for all the flow variables.

In this second exercise, we will focus our attention on the convergence of the horizontal velocity
component, ux , eddy-viscosity, �t , and on the ‘friction’ resistance coefficient at the bottom of the
computational domain , CD, defined by

CD = 4

U 2
1

∫ 1

0.5
�

(
�ux
�y

)
y=0

dx (23)

which is evaluated using a second-order accurate numerical integration scheme. The exact value
of the ‘friction’ resistance coefficient is

CD = 16√
�
ln(2)�

To provide more insight into the origin of any unexpected results, we will also include results
obtained in the calculation of the flow field using the eddy-viscosity from MS. We will refer to
these results with the subscript �ms.

3.5.1. Spalart & Allmaras one-equation model. The numerical difficulties observed in the previous
exercise for the MS1 became worse when the velocity field is also computed as part of the solution.
Therefore, we have only computed the complete flow field for the MS4 and MS2.

Figure 14 presents the RMS error of ux and CD as a function of the grid refinement level. The
results obtained using the manufactured eddy-viscosity field exhibit a well-established observed
order of accuracy equal to the theoretical order of the method. However, significantly different
trends were found in the complete flow field calculations:

• As expected, the MS4 exhibits a poor convergence of CD with the grid refinement ratio. In
the previous section, this behaviour was traced to the wall region. The convergence of ux is
also affected by the difficulties observed in the numerical determination of the eddy-viscosity
field.

• In the MS2, the numerical calculation of the eddy-viscosity field with a frozen velocity field
showed the expected behaviour. However, for the complete flow field calculations the observed
order of accuracy obtained for the RMS error of ux and for CD is below the theoretical order
of the method. Fortunately, the extrapolations to zero grid size are consistent, which is not
the case of the RMS of ux for the MS4.

The convergence of the RMS error of �t as a function of the grid refinement ratio is presented
in Figure 15. To allow an easy comparison with the results from the previous exercise, the plot
also includes the results obtained with a frozen velocity field, designated by the subscript e1.
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Figure 14. Grid convergence of the RMS of the error of the horizontal velocity component, ux , and of
friction resistance coefficient at the wall, CD. Spalart & Allmaras model.
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Figure 15. Grid convergence of the RMS error of the eddy viscosity. Spalart & Allmaras model.

The data plotted in Figure 15 show that the observed order of accuracy for �t is smaller in the
complete flow field calculation than in the previous exercise where the velocity field is taken from
the MS. However, the simple solution of the turbulence model transport equation is sufficient to
identify the problems observed in the complete flow field calculation.
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Figure 16. Grid convergence of the RMS error of the horizontal velocity
component, ux . TNT and BSL k–� models.

3.5.2. TNT and BSL k–� two-equation models. With the two versions of the k–� model, numerical
difficulties were encountered when solving for MS2B. The problems observed for the previous
exercise with the manufactured velocity field in the BSL version now extend to the TNT version.
However, in this case, the difficulties are due to negative turbulence quantities appearing in course
of the iterative solution procedure. Therefore, we did not include the MS2B in the complete flow
field calculations performed for the TNT and BSL versions of the k–� model. In the calculations
performed with the manufactured �t , we have dropped the B from the designation, because the
specified �t fields of MS4 and MS2 are equal to those of MS4B and MS2B.

The grid convergence of the RMS error of ux is presented in Figure 16 for the two versions of
the k–� model and the four MSs. The TNT and BSL versions of the k–� exhibit the same trends
for the convergence of ux , which is clearly less dependent on the selected MS than for the Spalart
& Allmaras one-equation model. The main features exhibited by the data are:

• All the cases present a well-established observed order of accuracy equal to the theoretical
order of the method, that is p= 2.

• The constant that defines the error level, 
 in Equation (21), is clearly dependent on the
selected MS.

— The largest 
 (largest errors) is obtained for the MS4B. This is somehow surprising, because
in MS4 and MS2 � goes to infinity at the wall. This confirms the trend observed in the
previous exercise (calculation of the k and � transport equations using the manufactured
velocity field), indicating that the problems caused by the boundary condition of � are
confined to a small vicinity of the bottom.

— The MS4, MS2 and MS1B exhibit smaller values of 
 for the complete flow field calculations
than in the calculations using the manufactured eddy viscosity.
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Figure 17. Grid convergence of the error of the friction resistance coefficient at the
wall, CD. TNT and BSL k–� models.
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Figure 18. Grid convergence of the RMS error of the eddy-viscosity, �t . TNT and BSL k–� models.

Figure 17 presents the error of the ‘friction’ resistance coefficient at the wall, CD, as a function
of the grid refinement. As for the RMS error of ux , the two versions of the k–� model exhibit the
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same trends. However, these are not the same as observed for ux .

• The MS4, MS4B and MS2 exhibit the expected observed order of accuracy of 2.0. On the
other hand, the MS1B leads to first-order p and an inconsistent extrapolation to zero grid
size, which is a consequence of the dependence of p on the group of grids selected for its
determination.

• This awkward result for MS1B was already present in the calculations performed with the
manufactured eddy-viscosity field, where the value of p was only of 1.3. This is really a
surprising result because the velocity field is the same for the three MSs and the lowest error
level is obtained for the highest-order definition of �t , MS4.

• Only MS4 presents an error level of the complete flow field calculation below the corre-
sponding calculation with the manufactured �t . This is a remarkable result, because the most
difficult near-wall variation of � is exactly the one of MS4.

The convergence of the RMS errors of �t of the calculations with and without calculating the
velocity field is compared in Figure 18. The trends observed in the two types of exercises are
qualitatively equivalent. However, it is curious that the range of the error level for the four MSs
is larger for the solutions using the manufactured velocity field than for the complete flow field
calculations. Furthermore, the comparison of error level of the four MSs is not identical for �t and
ux . The only systematic trend is that the MS1B leads to the smallest level of the error.

4. CONCLUSIONS

This paper presents MSs for the one-equation model of Spalart & Allmaras and the TNT and BSL
versions of the two-equation k–� eddy-viscosity models. The two velocity components and the
pressure are identical for all the MSs but various alternatives were tested for the eddy-viscosity
and turbulence quantities pertinent to the turbulence models.

For the Spalart & Allmaras one-equation model, we have tested three different fields of the
dependent variable, �̃. They differ in the near-wall behaviour of �̃, which can vary as ∼y4, y2 or
y1 where y is the distance to the wall.
The three �̃ manufactured fields for the Spalart & Allmaras model were also used as eddy-

viscosity fields, �t , for the TNT and BSL versions of the k–� model. The manufactured turbulence
kinetic energy, k, was defined in two ways: an equation similar to the eddy-viscosity but with a
lower order dependency on the distance to the wall; or Bradshaw’s hypothesis for turbulence in
equilibrium defining k as a function of the eddy-viscosity and the strain rate. The second variable
� is calculated from the specified �t and k: �= k/�t . With the two options tested for k, we have
fields of � that are singular at the wall (with variation in y−2, y−1) and non-singular fields with
finite values of � at the wall.

In this paper, we have presented results of three types of calculations: solution of the turbulence
quantities transport equations using the manufactured velocity field; solution of the continuity and
momentum equations using the manufactured eddy-viscosity field; solution of the complete flow
field. The results, obtained with a second-order accurate method, show that the construction of
MSs for turbulence models is a delicate matter.

We have observed an unexpectedly high sensitivity of the Spalart & Allmaras model to the man-
ufactured field of the dependent variable, �̃. The original MS proposed in [8] leads to convergence
difficulties near the wall, which are linked to �̃ behaving as y4 near the wall in the MS4. The

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:119–154
DOI: 10.1002/fld



EDDY-VISCOSITY MODELS 145

poor convergence properties obtained for the eddy-viscosity are reflected in the convergence of
the velocity and pressure field. An alternative MS with a y2 dependence in the ‘near-wall’ region
significantly improves the convergence properties of the Spalart & Allmaras model. Finally, an
MS with a linear variation with the distance to the wall leads to severe numerical problems, which
were traced to the dissipation term.

The convergence properties obtained for the two versions of the k–� model are much less
sensitive to the choice of MS than those of the one-equation model of Spalart & Allmaras.
However, some numerical difficulties were encountered. In particular, it is difficult to reproduce
the expected behaviour of the blending function of the BSL model, which sometimes causes kinks
or oscillations in the manufactured cross-diffusion term.

Specifying k from Bradshaw’s equilibrium hypothesis is an elegant way to define k, but it
does not lead to the behaviour of � representative of a near-wall turbulent flow. With the correct
� boundary condition at the wall (�=∞) there are locally significant errors in the � solution.
However, in the present MS, this does not affect the calculation of the other flow quantities,
including the friction resistance coefficient at the wall.

The grid dependency studies performed for the MSs have also indicated some difficulties for
error estimation procedures:

• The convergence properties (error level and observed order of accuracy) may be strongly
dependent on the behaviour of the dependent variable of the turbulence model. Furthermore,
the observed order of accuracy of the turbulence quantities may be significantly different from
the theoretical order of the numerical method adopted.

• The observed order of accuracy of the turbulence quantities may not be uniform over the
whole flow field. This means that the observed order of accuracy of the RMS may not be
representative of the local convergence properties.

• The convergence properties of the eddy-viscosity may be affected by the damping functions
of the turbulence models.

APPENDIX A. SOURCE TERMS OF THE TURBULENCE QUANTITIES
TRANSPORT EQUATIONS

A.1. Spalart & Allmaras one-equation model

The Spalart & Allmaras model proposed in [9] solves the following transport equation:

ux
��̃

�x
+ uy

��̃

�y
= cb1 S̃�̃ + 1

�s
[∇ · ((� + �̃)∇ �̃) + cb2(∇ �̃ · ∇ �̃)] − cw1 fw

[
�̃

d

]2
(A1)

where

S� =
∣∣∣∣�ux�y

− �uy

�x

∣∣∣∣
S̃ = S� + �̃

�2d2
fv2

d = y
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fw = g

[
1 + c6w3

g6 + c6w3

]1/6

fv2 = 1 − �

1 + � fv1

g = r + cw2(r
6 − r)

r = �̃

S̃�2d2

� = �̃

�

fv1 = �3

�3 + c3v1
(A2)

The eddy-viscosity is obtained from

�t = �̃ fv1 (A3)

The model constants are:

�= 0.41, cb1 = 0.1355, cb2 = 0.622

cw1 = 3.2391, cw2 = 0.3, cw3 = 2

cv1 = 7.1, �s = 2
3

The source function to be added to the right-hand side of the transport equation of �̃, Equation
(A1), is given by

fspal = Tcs + Tds + Tps + Tdis (A4)

where

Tcs = u
��̃

�x
+ v

��̃

�y

Tds = − 1

�s

[
(� + �̃)

(
�2�̃
�x2

+ �2�̃
�y2

)
+ (1 + cb2)

((
��̃

�x

)2

+
(

��̃

�y

)2
)]

Tps = −cb1 S̃�̃

Tdis = cw1 fw

[
�̃

d

]2
(A5)
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The first and second derivatives of �̃ with respect to x and y are given by
• MS4 definition of �̃, Equation (9)
— First derivatives

��̃

�x
= 2

�̃

x
(�2� − 2)

��̃

�y
= 2

�̃

y
(2 − �2�)

(A6)

— Second derivatives

�2�̃
�x2

= 2
�̃

x2
(2�4� − 11�2� + 10)

�2�̃
�y2

= 2
�̃

y2
(2�4� − 9�2� + 6)

(A7)

• MS2 definition of �̃, Equation (11)
— First derivatives

��̃

�x
= 2

�̃

x
(�2� − 1)

��̃

�y
= 2

�̃

y
(1 − �2�)

(A8)

— Second derivatives

�2�̃
�x2

= 2
�̃

x2
(2�4� − 7�2� + 3)

�2�̃
�y2

= 2
�̃

y2
(2�4� − 5�2� + 1)

(A9)

• MS1 definition of �̃, Equation (12)
— First derivatives

��̃

�x
= �̃

x
(2�2� − 1)

��̃

�y
= �̃

y
(1 − 2�2�)

(A10)

— Second derivatives

�2�̃
�x2

= 2
�̃

x2
(2�4� − 5�2� + 1)

�2�̃
�y2

= 2
�̃

y2
(2�4� − 3�2�)

(A11)
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A.1.1. Maximum and minimum values of the different terms of the transport equations

Convection Diffusion Pressure Source term

Min Max Min Max Min Max Min Max

x momentum equation
MS4 −0.41 0.000 −0.21 0.16 0.000 0.11 −0.28 0.11
MS2 −0.41 0.000 −0.27 0.18 0.000 0.11 −0.30 0.11
MS1 −0.41 0.000 −0.44 0.19 0.000 0.11 −0.33 0.11

Convection Diffusion Pressure Source Term

Min Max Min Max Min Max Min Max

y momentum equation
MS4 −0.11 0.00 −0.03 0.02 −0.07 0.00 −0.13 0.00
MS2 −0.11 0.00 −0.03 0.02 −0.07 0.00 −0.13 0.00
MS1 −0.11 0.00 −0.02 0.02 −0.07 0.00 −0.13 0.00

Tcs × 103 Tds × 103 Tps × 103 Tdis × 103 fspal × 103

Min Max Min Max Min Max Min Max Min Max

�̃ transport equation
MS4 −0.62 1.79 −2.15 2.46 −0.92 0.00 0.00 0.11 −3.07 1.66
MS2 −0.26 1.18 −2.62 2.46 −1.06 0.00 0.00 0.63 −2.69 1.66
MS1 −0.10 0.82 −5.28 2.50 −1.14 0.04 0.00 14.09 −0.97 9.44

A.2. TNT and BSL k–� two-equation models

The TNT, [13], and BSL, [14], k–� models solve the following transport equations:

u
�k
�x

+ v
�k
�y

= �t S + ∇ ·
((

� + �t
�k

)
∇k

)
− �∗�k (A12)

u
��

�x
+ v

��

�y
= 
S + ∇ ·

((
� + �t

��

)
∇�

)
− ��2 + F�

1

�
∇k · ∇� (A13)

For the TNT version, the model constants are

�∗ = 0.09, �= 0.075, 
 = �

�∗ − �2

��
√

�∗

�k = 1.5, �� = 2, � = 0.41
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F� = 0.5 if ∇k · ∇�>0

F� = 0 if ∇k · ∇�<0

In the BSL case, we have


 = F1
1 + (1 − F1)
2, 
 = F1�1 + (1 − F1)�2

�k = F1�k1 + (1 − F1)�k2, �� = F1��1 + (1 − F1)��2

�∗ = 0.09, � = 0.41

F� = 2(1 − F1)

��2


1 = �1
�∗ − �2

��1
√

�∗ , 
2 = �2
�∗ − �2

��2
√

�∗

�1 = 0.075, �2 = 0.0828

�k1 = 2, �k2 = 1

��1 = 2, ��2 = 1

0.856

The blending function F1 is given by

F1 = tanh(arg41) (A14)

where

arg1 = min

[
max

( √
k

0.09�y
,
500�

�y2

)
,

4k

��2CDk�y2

]
(A15)

and

CDk� = max

(
2

��2�
∇k · ∇�, 10−20

)
(A16)

The satisfaction of the manufactured solutions requires source terms to be added to the k and
� transport equations, which in this case are:

fk�t = Tck�t + Tdk�t + Tpk�t + Tdik�t

f�t = Tc�t + Td�t + Tp�t + Tdi�t

(A17)

Tck�t = u
�k
�x

+ v
�k
�y

Tdk�t = −
[(

� + �t
�k

)(
�2k
�x2

+ �2k
�y2

)
+ 1

�k

(
��t
�x

�k
�x

+ ��t
�y

�k
�y

)]

Tpk�t = −�t S

Tdik�t = �∗�k

(A18)
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Tc�t = u
��

�x
+ v

��

�y

Td�t = −
[(

� + �t
��

)(
�2�
�x2

+ �2�
�y2

)
+ 1

��

(
��t
�x

��

�x
+ ��t

�y
��

�y

)]

Tp�t = −
S

Tdi�t = ��2 − F�
1

�
∇k · ∇�

(A19)

In order to avoid problems due to the discontinuities of the derivatives of the blending function
F1, we have taken �k = �k1 and �� = ��1 in the BSL version.
The derivatives of �t are equivalent to the ones given above for �̃. The first and second derivatives

of k and � for the five MSs are listed below.

• MS4
— k defined by Equation (17):

∗ First derivatives

�k
�x

= 2
k

x

(
�2� − 1

)
�k
�y

= 2
k

y
(1 − �2�)

(A20)

∗ Second derivatives

�2k
�x2

= 2
k

x2
(2�4� − 7�2� + 3)

�2k
�y2

= 2
k

y2
(2�4� − 5�2� + 1)

(A21)

— � defined by Equation (18):
∗ First derivatives

��

�x
= 2�

x

��

�y
= −2�

y

(A22)

∗ Second derivatives

�2�
�x2

= 2�

x2

�2�
�y2

= 6�

y2

(A23)
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• MS2
— k defined by Equation (19):

∗ First derivatives

�k
�x

= k

x
(2�2� − 1)

�k
�y

= k

y
(1 − 2�2�)

(A24)

∗ Second derivatives

�2k
�x2

= 2
k

x2
(2�4� − 5�2� + 1)

�2k
�y2

= 2
k

y2
(2�4� − 3�2�)

(A25)

— � defined by Equation (20):
∗ First derivatives

��

�x
= �

x

��

�y
= −�

y

(A26)

∗ Second derivatives

�2�
�x2

= 0

�2�
�y2

= 2�

y2

(A27)

• MS4B, MS2B and MS1B
— k defined by Equation (13):

* First derivatives

�k
�x

= 1

0.3

(
�t

�S
�x

+ S
��t
�x

)

�k
�y

= 1

0.3

(
�t

�S
�y

+ S
��t
�y

) (A28)

∗ Second derivatives

�2k
�x2

= 1

0.3

(
�t

�2S
�x2

+ 2
�S
�x

��t
�x

+ S
�2�t
�x2

)

�2k
�y2

= 1

0.3

(
�t

�2S
�y2

+ 2
�S
�y

��t
�y

+ S
�2�t
�y2

) (A29)
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— � defined by Equation (16):
∗ First derivatives

��

�x
= 1

0.3

�S
�x

�k
�y

= 1

0.3

�S
�y

(A30)

∗ Second derivatives

�2�
�x2

= 1

0.3

�2S
�x2

�2�
�y2

= 1

0.3

�2S
�y2

(A31)

— Strain rate, S, Equation (14).
∗ First derivatives

�S
�x

= �2ux
�x�y

+ �2uy

�x2

�S
�y

= �2ux
�y2

+ �2uy

�x�y

(A32)

∗ Second derivatives

�2S
�x2

= �3ux
�x2�y

+ �3uy

�x3

�2S
�y2

= �3ux
�y3

+ �3uy

�x�y2

(A33)

A.2.1. Maximum and minimum values of the different terms of the transport equations

TNT Convection Diffusion Pressure Source term

BSL Min Max Min Max Min Max Min Max

x momentum equation
MS4, MS4B −0.41 0.00 −0.21 0.16 0.00 0.11 −0.28 0.11
MS2, MS2B −0.41 0.00 −0.27 0.18 0.00 0.11 −0.30 0.10
MS1B −0.41 0.00 −0.42 0.19 0.00 0.11 −0.31 0.11

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:119–154
DOI: 10.1002/fld



EDDY-VISCOSITY MODELS 153

TNT Convection Diffusion Pressure Source term

BSL Min Max Min Max Min Max Min Max

y momentum equation
MS4, MS4B −0.11 0.00 −0.03 0.02 −0.07 0.00 −0.13 0.00
MS2, MS2B −0.11 0.00 −0.03 0.02 −0.07 0.00 −0.13 0.00
MS1B −0.11 0.00 −0.02 0.02 −0.07 0.00 −0.13 0.00

TNT Tck�t × 103 Tdk�t × 103 Tpk�t × 103 Tdik�t × 103 fk�t × 103

Min Max Min Max Min Max Min Max Min Max

k transport equation
MS4 −2.59 11.77 −4.99 8.71 −48.11 0.00 0.00 36.00 −28.97 35.99
MS2 −1.03 8.24 −4.84 9.21 −62.55 0.00 0.00 18.00 −45.26 17.96
MS4B −29.53 24.09 −14.05 27.09 −48.11 0.00 0.00 45.28 −33.26 13.97
MS2B −21.73 16.83 −20.57 31.90 −62.55 0.00 0.00 60.68 −27.63 9.43
MS1B −16.02 11.82 −43.43 35.31 −71.33 0.00 0.00 70.25 −43.44 18.48

BSL Tck�t × 103 Tdk�t × 103 Tpk�t × 103 Tdik�t × 103 fk�t × 103

Min Max Min Max Min Max Min Max Min Max

MS4 −2.59 11.77 −3.74 6.54 −48.11 0.00 0.00 36.00 −30.13 35.99
MS2 −1.03 8.24 −3.63 6.91 −62.55 0.00 0.00 18.00 −46.74 17.97
MS4B −29.53 24.09 −10.54 20.33 −48.11 0.00 0.00 45.28 −30.77 15.68
MS2B −21.73 16.83 −15.43 23.93 −62.55 0.00 0.00 60.68 −22.93 10.50
MS1B −16.02 11.82 −32.57 26.50 −71.33 0.00 0.00 70.25 −32.58 9.71

TNT Tc�t Td�t Tp�t Tdi�t fk�t

Min Max Min Max Min Max Min Max Min Max

� transport equation
MS4 0.51 >100 → ∞ 5.03 −44.98 0.00 −0.43 →∞ −19.37 → ∞
MS2 1.23 3.87 → ∞ 0.00 −44.98 0.00 0.06 →∞ −29.87 → ∞
MS4B −17.98 11.84 −2.46 3.06 −44.98 0.00 0.00 67.77 −9.83 22.52
MS2B −17.98 11.84 −2.08 2.78 −44.98 0.00 0.00 67.77 −10.98 22.52
MS1B −17.98 11.84 −1.70 2.48 −44.98 0.00 0.00 67.77 −10.26 22.61

BSL Tc�t Td�t Tp�t Tdi�t fk�t

Min Max Min Max Min Max Min Max Min Max

MS4 0.51 >100 → ∞ 5.03 −36.85 0.00 −6.42 →∞ −20.68 → ∞
MS2 1.23 3.87 → ∞ 0.00 −44.98 0.00 −0.94 →∞ −28.66 → ∞
MS4B −17.98 11.84 −2.46 3.06 −44.98 0.00 0.00 74.25 −11.42 34.89
MS2B −17.98 11.84 −2.08 2.78 −44.98 0.00 0.00 67.77 −9.99 22.52
MS1B −17.98 11.84 −1.70 2.48 −44.98 0.00 0.00 67.77 −7.51 22.61
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